Time limit: 45 minutes.

No calculators

Instructions The following questions are meant to be solved by a team of up to four people and require full, well-formulated proofs as answers. Partial credit will be given to solutions that do not completely answer a problem or those with errors. If you do not finish a question you may still the results of that question to solve later parts of the exam.

Introduction

This round will introduce a particular extension of the rational numbers that satisfies certain properties detailed below. By an extension of the rational numbers we mean a set that contains the rational numbers. This is denoted by the following: if A contains the rationals we write $\mathbb{Q} \subset A$ or $A \supset \mathbb{Q}$. Some familiar examples of extensions of the rationals are the complex numbers and the real numbers, which will be denoted by \mathbb{C} and \mathbb{R} respectively. The rationals and integers will be denoted by \mathbb{Q} and \mathbb{Z} .

Before jumping right into the test, we begin with some definitions:

Definition 1 A set $A \supset \mathbb{Q}$ is called a field if it satisfies the following properties: *i)* If $x, y \in A$, that is, x and y are in A, then so are xy and x+y *ii)* Both 0 and 1 are elements of A*iii)* If $x \in A$ then so is -x. If, in addition, $x \neq 0$ then $\frac{1}{x}$ is in A as well.

Example 1 \mathbb{Q} is itself a field

Example 2 The set of irrational numbers, \mathbb{I} is not a field since $\sqrt{2} * \sqrt{2} = 2$ which is not irrational so \mathbb{I} fails to satisfy property i of the definition of a field.

Definition 2 If $A \supset \mathbb{Q}$ is a field, then we call A an ordered field if A satisfies the following properties:

i) For any $x, y \in A$ if $x \neq y$ then either x < y or y < xii) If $x, y \ge 0$ then $xy \ge 0$ iii) If $x \le y$ then for any $z \in A$, $x + z \le y + z$

Definition 3 Let $A \supset \mathbb{Q}$ be an ordered field. The Least Upper Bound Property states the following: If $X \subset A$ has an upper bound (there exists $M \in A$ such that for all $a \in X$, M > a) then there is an element $b \in A$, called the least upper bound, that satisfies the following properties:

i) b is an upper bound of X

ii) If $a \in A$ and a < b then there is $c \in X$ such that $a < c \le b$

Example 3 The least upper bound of the set $\{x \in \mathbb{Q} : x < 2\}$ is 2.

Questions

Let $A \supset \mathbb{Q}$ be an ordered field satisfying the Least Upper Bound Property.

1. Show that $A \neq \mathbb{C}$ (4 points)

For the remainder of the test you may assume that $A \subset \mathbb{R}$

- 2. Show that $A \neq \mathbb{Q}$ (4 points)
- 3. Let $a, b \in A$ such that 0 < a < b. Show, using the least upper bound property, that there is an integer n such that na > b. (4 points)
- 4. Let $a, b \in A$ such that 0 < a < b. Show that there exists infinitely many $c \in \mathbb{Q}$ such that a < c < b (4 points)

Definition 4 The Greatest Lower Bound Property states the following: If $X \subset A$ has a lower bound (there exists $M \in A$ such that for all $a \in X$, M < a) then there is an element $b \in A$, called the greatest lower bound, that satisfies the following properties: i) b is a lower bound of X ii) if $a \in A$ and a > b then there is $c \in X$ such that $a > c \ge b$

5. Show that A satisfies the Greatest Lower Bound Property (6 points)

Definition 5 For any $a, b \in A$ define the interval $I_{ab} = \{x \in A : a \leq x \leq b\}$. We also define the length of an interval $Length(I_{ab})$ to be b - a.

- 6. Let $I_{a_1b_1} \supset I_{a_2b_2} \supset I_{a_3b_3} \supset \dots$ be an infinite collection of intervals in A. Show that $\bigcap_{n=1}^{\infty} I_{a_nb_n} = \{x \in A : x \in I_{a_nb_n}, \text{ for all } n \in \mathbb{Z}\}$ is not empty. This is called the Nested Interval Theorem. (12 points)
- 7. Let $I_{a_1b_1}, I_{a_2b_2}, I_{a_3b_3}...$ be as in question 6. Assume also that $\lim_{n\to\infty} Length(I_{a_nb_n}) = 0$. That is, for any $\epsilon > 0$ there is an N such that for all $n \ge N Length(I_{a_nb_n}) < \epsilon$. Show that $\bigcap_{n=1}^{\infty} I_{a_nb_n} = x$ for some $x \in A$. (4 points)
- 8. Let $B \supset \mathbb{Q}$ be an ordered field that satisfies the Nested Interval Theorem. Show that B also satisfies the Least Upper Bound Property. (12 points)

An ordered field satisfying either the Nested Interval Theorem or the Least Upper Bound Property is called complete.